EnsDeconv.Rmd
# install devtools if necessary
if (!"devtools" %in% rownames(installed.packages())) {
install.packages('devtools')
}
# install the EnsDeconv package
if (!"EnsDeconv" %in% rownames(installed.packages())) {
devtools::install_github("randel/EnsDeconv", dependencies = T)
}
Use two reference data, one deconvoluton methods, one normaliztaion, one transformation, one marker gene approach.
The testdata includes two different reference dataset (Nowakowski and Darmanis), and sample bulk data (n = 10).
## Warning: package 'scran' was built under R version 4.2.2
## Warning: package 'SingleCellExperiment' was built under R version 4.2.2
## Warning: package 'S4Vectors' was built under R version 4.2.2
## Warning: package 'GenomeInfoDb' was built under R version 4.2.2
## Warning: package 'scuttle' was built under R version 4.2.2
data(testdata)
params = get_params(data_type = "singlecell-rna", data_name = names(testdata$ref_list), n_markers = 50, Marker.Method = "t", TNormalization = "none", CNormalization = "none", dmeths = "CIBERSORT")
res = EnsDeconv(count_bulk = as.matrix(testdata$count_bulk), ref_list = testdata$ref_list, params = params)
# Use parallel computing
# res = EnsDeconv(count_bulk = as.matrix(testdata$count_bulk), ref_list = testdata$ref_list, ncore = 4, parallel_comp = T, params = params, outpath= '...')
pheatmap::pheatmap(res[["EnsDeconv"]][["ensemble_p"]],cluster_rows = F, cluster_cols = F)